Haifeng Yang deleted file Quantize K-G Field.tex  over 10 years ago

Commit id: e0e99b01f9b8b6429482d3f0756386d14a3c1d4e

deletions | additions      

         

\subsection{Quantize Klein-Gordon}     \subsubsection{Fourier Transformation}   $$\hat{\phi}(\mathbf{x}) = \int \frac{d^3 k}{(2\pi)^3 } \hat{\tilde{\phi}}(\mathbf{k})e^{i\mathbf{k}\cdot \mathbf{x}}$$   $$\hat{\pi}(\mathbf{y}) = \int \frac{d^3 k}{(2\pi)^3 } \hat{\tilde{\pi}}(\mathbf{k})e^{i\mathbf{k}\cdot \mathbf{y}}$$     So (excise: Prove this):   $$\hat{H} = \int \frac{d^3 k}{(2\pi)^3 } \left[   \frac{1}{2}\hat{\tilde{\pi}}(\mathbf{k})^\dagger \hat{\tilde{\pi}}(\mathbf{k})   +\frac{1}{2}\omega_\mathbf{k}^2 \hat{\tilde{\phi}}(\mathbf{k})^\dagger \hat{\tilde{\phi}}(\mathbf{k})   \right]$$     Note: These are complex harmonic oscillators. $\tilde{\phi}(-\mathbf{k})=\tilde{\phi}(\mathbf{k})^*$. All $\mathbf{k}$'s are not independent.     \subsubsection{Commutation Relations}   $$[\hat{\tilde{\pi}}(\mathbf{k'}), \hat{\tilde{\phi}}(\mathbf{k})] = - i (2\pi)^3 \delta^{(3)} (\mathbf{k} + \mathbf{k'})$$   Or:   $$[\hat{\tilde{\pi}}(\mathbf{k'})^\dagger, \hat{\tilde{\phi}}(\mathbf{k})] = - i (2\pi)^3 \delta^{(3)} (\mathbf{k} - \mathbf{k'})$$     Defining uppering and lowering operators, we get:   $$\hat{\phi}(\mathbf{x}) = \int \frac{d^3 k}{(2\pi)^3 } \left[   \hat{a}_\mathbf{k} e^{i\mathbf{k}\cdot\mathbf{x}} + \hat{a}_\mathbf{k}^\dagger e^{-i\mathbf{k}\cdot \mathbf{x}}   \right]$$