Brian Jackson edited section_Formulating_the_Recovery_Biases__.tex  almost 9 years ago

Commit id: 89783e4f1a2fc5c554cda1f7789f5bbecca11a1a

deletions | additions      

       

\begin{equation}\label{eqn:Pobs_from_Lorentz_profile}  P_{\rm obs} = \dfrac{P_{\rm act}}{1 + \left( \dfrac{2 b}{\Gamma_{\rm act}} \right)^2}.  \end{equation}  Clearly, unless $b = 0$, $P_{\rm obs} < P_{\rm act}$, and, it turns out, and  the profile width observed in the time series $\Gamma_{\rm obs}^\prime > \Gamma_{\rm act}^\prime$. act}^\prime$, as pointed out by \cite{Ellehoj_2010} and \cite{Lorenz_2014}.  These effects represent the signal distortion induced by the miss distance effect. Given $P_{\rm obs}$- and $P_{\rm act}$-values, we can solve Equation \ref{eqn:Pobs_from_Lorentz_profile} for $b$:  \begin{equation}\label{eqn:b_from_Lorentz_profile}  b = \left( \dfrac{\Gamma_{\rm act}}{2} \right) \sqrt{ \dfrac{P_{\rm act} - P_{\rm obs}}{P_{\rm obs}}}.  \end{equation}  There is a maximum closest approach distance $b_{\rm max}$ beyond which a devil will produce an undetectably small pressure signal, $P_{\rm obs} < P_{\rm min}$, and $b_{\rm max} = \left( \dfrac{\Gamma_{\rm act}}{2} \right) \sqrt{ \dfrac{P_{\rm act} - P_{\rm min}}{P_{\rm min}}}$. Devils with $b > b_{\rm max}$ will not be detected, which will bias our recovered population of devil parameters in ways that depend on the parameters themselves. It's worth noting that $\Gamma_{\rm act}$ may depend on $P_{\rm act}$, a point we will return to in Section. Again, this recovery bias results from the miss distance effect. Next, we use these equations to formulate the recovery biases and signal distortions resulting from the miss distance effect.