Brian Jackson edited Ultimately_though_we_re_interested__.tex  almost 9 years ago

Commit id: 7469982a53f1a8049a7b607a617bd6d00a80094d

deletions | additions      

       

\begin{equation}\label{eqn:n-Pact_from_n-Pobs}  n(P_{\rm act}) = -P_{\rm act}^{-1} \left( \dfrac{P_{\rm max} - P_{\rm min}}{P_{\rm min}} \right) \left( \frac{d}{dP_{\rm obs}} \right)_{P_{\rm obs} = P_{\rm act}} \bigg[ n(P_{\rm obs})\ P_{\rm obs}^2 \bigg],  \end{equation}  where $\left( \frac{d}{dP_{\rm obs}} \right)_{P_{\rm obs} = P_{\rm act}}$ indicates to calculate the $P_{\rm obs}$-derivative of the expression in square brackets and then replace $P_{\rm obs}$ with $P_{\rm act}$. It is important to re-iterate that Equation \ref{eqn:n-Pact_from_n-Pobs} assumes $\Gamma_{\rm act}$ independent of $P_{\rm act}$, a limitation upon which we will improve below.  It's clear that applying Equation \ref{eqn:n-Pact_from_n-Pobs} to the $n(P_{\rm obs})$ from Equation \ref{eqn:n-obs_from_uniform_n-Pact} recovers the original uniform distribution. Considering field studies, \cite{Jackson_2015} reported a distribution $n(P_{\rm obs}) \sim P_{\rm obs}^{-2}$, which Equation \label{eqn:n-Pact_from_n-Pobs} indicates would arise from $n(P_{\rm act}) \sim P_{\rm act}^{-1}$.