Brian Jackson edited These_details_allow_us_to__.tex  over 8 years ago

Commit id: 610f0b71412ef319bce9f870771f71efa7097bc2

deletions | additions      

       

\label{eqn:difference_between_observed_density_points}  \rho(\Gamma_{\rm obs}, P_{\rm obs}) - \rho(\Gamma_0, P_{\rm min}) &=& &\int_{(\Gamma_{\rm obs}, P_{\rm obs})}^{(\Gamma_1, P_{\rm max})} \cdots db^\prime& - &\int_{(\Gamma_0, P_{\rm min})}^{(\Gamma_1, P_{\rm max})} \cdots db^\prime& \\ &=& &\int_{(\Gamma_0, P_{\rm min})}^{(\Gamma_{\rm obs}, P_{\rm obs})} \cdots db^\prime& = &\int_{b^\prime = 0}^{b} \cdots db^\prime &,  \end{eqnarray}  where we have suppressed the integrand for simplicity. clarity.  We can then differentiate both sides with respect to $b = \left( \Gamma_{\rm obs}/2\right) \left[ \left( P_{\rm obs} - P_{\rm min} \right)/P_{\rm min} \right]^{1/2}$, but, for the left-hand side, we will convert the $b$-derivative into a $P_{\rm obs}$-derivative: \begin{equation}  \label{eqn:b_derivative_into_P_obs_derivative}  db = \frac{1}{2} b \left( \dfrac{P_{\rm obs} - P_{\rm min}}{P_{\rm min}} \right)^{-1} \dfrac{dP_{\rm obs}}{P_{\rm obs}}.