Brian Jackson edited As_it_travels_on_the__.tex  over 8 years ago

Commit id: 56b158f9635be64c5eb1b7f9df50885e7db2e432

deletions | additions      

       

\label{eqn:dust_devil_area}  A = \pi b_{\rm max}^2 + \upsilon \tau b_{\rm max} = \left( \Gamma_{\rm act}/2 \right) \sqrt{ \dfrac{P_{\rm act} - P_{\rm min}}{P_{\rm min}} } \left[ \pi \left( \Gamma_{\rm act}/2 \right) \sqrt{ \dfrac{P_{\rm act} - P_{\rm min}}{P_{\rm min}} } + \upsilon \tau \right].  \end{equation}  The probability to recover a devil is proportional to this total area. Thus devils with deeper and wider pressure profiles are more likely to be recovered. As illustrated in Using the lifetime scaling from \citet{Lorenz_2014},  Figure \ref{fig:relative_areas}, \ref{fig:relative_areas} shows taht  the second term dominates over the first term for all but the smallest, slowest dust devils, so, for simplicity, we'll neglect the first term, giving \begin{equation}  A \approx \left( \Gamma_{\rm act}/2 \right) \sqrt{ \dfrac{P_{\rm act} - P_{\rm min}}{P_{\rm min}} } \upsilon \tau.  \end{equation}