Brian Jackson edited subsection_The_Recovery_Bias_As__.tex  over 8 years ago

Commit id: 5238e2296bb8f76c8c943468186e59d5ea185fb5

deletions | additions      

       

\label{eqn:dust_devil_area}  A = \pi r_{\rm max}^2 + \upsilon \tau r_{\rm max} = \left( \Gamma_{\rm act}/2 \right) \sqrt{ \dfrac{P_{\rm act} - P_{\rm min}}{P_{\rm min}} } \left[ \pi \left( \Gamma_{\rm act}/2 \right) \sqrt{ \dfrac{P_{\rm act} - P_{\rm min}}{P_{\rm min}} } + \upsilon \tau \right],  \end{equation}  where $r_{\rm max}$ is the radial distance from the devil's center to its $P_{\rm min}$ contour, given by $r_{\rm max} = \left( \dfrac{\Gamma_{\rm act}}{2} \right) \sqrt{\dfrac{P_{\rm act} - P_{\rm min}}{P_{\rm min}}$. min}}}$.  The probability to recover a devil is proportional to this total track area. Thus devils with deeper and wider pressure profiles are more likely to be recovered. Using the lifetime scaling from \citet{Lorenz_2014}, Figure \ref{fig:relative_areas} shows that the second term dominates over the first term for all but the smallest, slowest dust devils, so, for simplicity, we'll neglect the first term, giving \begin{equation}  A \approx \left( \Gamma_{\rm act}/2 \right) \sqrt{ \dfrac{P_{\rm act} - P_{\rm min}}{P_{\rm min}} } \upsilon \tau.  \end{equation}