Brian Jackson edited Ultimately_though_we_re_interested__.tex  almost 9 years ago

Commit id: 4de4f8da974eaac4e6b2703223fbc7ed5c80cf20

deletions | additions      

       

\end{equation}  where $\left( \frac{d}{dP_{\rm obs}} \right)_{P_{\rm obs} = P_{\rm act}}$ means to calculate the $P_{\rm obs}$-derivative of the expression in square brackets and then replace $P_{\rm obs}$ with $P_{\rm act}$. It is important to re-iterate that Equation \ref{eqn:n-Pact_from_n-Pobs} assumes $\Gamma_{\rm act}$ independent of $P_{\rm act}$, a limitation upon which we will improve below.   It's clear that plugging Equation \ref{eqn:n-Pobs_from_uniform_n-Pact} into Equation \ref{eqn:n-Pact_from_n-Pobs} recovers the original uniform distribution. On the surface, though, Equation \ref{eqn:n-Pact_from_n-Pobs} suggests the strange result that for the power-law distribution $n(P_{\rm obs}) \sim P_{\rm obs}^{-2}$, similar to that reported in \citet{Jackson_2015}, the underlying distribution $n(P_{\rm obs}) = 0$. However, the approach here assumes that $P_{\rm obs}$-values only span a finite range, which is violated by the simple $P_{\rm obs}^{-2}$ power-law. Moreover, as we show below, allowing for a distribution of $\Gamma_{\rm act}$-values significantly modifies the relationship between $n(P_{\rm act})$ and $n(P_{\rm obs})$.