Brian Jackson edited subsection_The_Signal_Distortion_The__1.tex  over 8 years ago

Commit id: 324ef5cbd4ac090e7d76e68f9bbcb99698953760

deletions | additions      

       

\subsection{The Signal Distortion}  The deepest point observed in the pressure profile $P_{\rm obs}$ is given by   \begin{equation}\label{eqn:Pobs_from_Lorentz_profile} \begin{equation}\label{eqn:P_obs}  P_{\rm obs} = \dfrac{P_{\rm act}}{1 + \left( \dfrac{2 b}{\Gamma_{\rm act}} \right)^2}.  \end{equation}  Clearly, unless $b = 0$, $P_{\rm obs} < P_{\rm act}$. Likewise, non-central encounters will distort the profile full-width/half-max, giving a full-width/half-max $\Gamma_{\rm obs}$.   Having passed through its minimum at the devil's closest approach distance, the observed pressure signal reaches half its value at a time $t = \frac{1}{2} \Gamma_{\rm obs}^\prime = \frac{1}{2} \Gamma_{\rm obs}/\upsilon$ by definition. At this time, the center of the devil is a radial distance from the barometer $r(t = \Gamma_{\rm obs}^\prime/2) = \sqrt{b^2 + \left( \frac{1}{2} \Gamma_{\rm obs} \right)^2}$ and $P(r) = \frac{1}{2} P_{\rm obs} = \frac{1}{2} \dfrac{P_{\rm act}}{1 + \left( 2 b /\Gamma_{\rm act} \right)^2} = \dfrac{P_{\rm act}}{1 + \left( 2r(\Gamma_{\rm obs}^\prime/2)/\Gamma_{\rm act} \right)^2 }$. Solving for $\Gamma_{\rm obs}$ gives $\Gamma_{\rm \begin{equation}  \label{eqn:Gamma_obs}  \Gamma_{\rm  obs}^2 = \Gamma_{\rm act}^2 + \left( 2b \right)^2$. \right)^2.   \end{equation}  Figure \ref{fig:compare_profiles} shows how a non-central encounter modifies the observed pressure profile, and we call this modification of the observed signal due to the miss distance effect the signal distortion. We can solve Equation \ref{eqn:Pobs_from_Lorentz_profile} \ref{eqn:P_obs}  for $b$: \begin{equation}\label{eqn:b_from_Lorentz_profile} \begin{equation}\label{eqn:b}  b = \left( \dfrac{\Gamma_{\rm act}}{2} \right) \sqrt{ \dfrac{P_{\rm act} - P_{\rm obs}}{P_{\rm obs}}}.  \end{equation}  A single barometer at a fixed location can sense a dust devil only over a certain area, spanning a maximum radial distance $b_{\rm max}$, beyond which devils will produce pressure signals smaller than the detection threshold, $P_{\rm obs} < P_{\rm min}$: $b_{\rm max} = \left( \dfrac{\Gamma_{\rm act}}{2} \right) \sqrt{\dfrac{P_{\rm act} - P_{\rm min}}{P_{\rm min}}}$. Devils with $b > b_{\rm max}$ will not be detected.