Brian Jackson edited Ultimately_though_we_re_interested__.tex  almost 9 years ago

Commit id: 20a3506cd2dd85361a6ef72edc8d5864efbfe2eb

deletions | additions      

       

\end{equation}  where $\left( \frac{d}{dP_{\rm obs}} \right)_{P_{\rm obs} = P_{\rm act}}$ indicates to calculate the $P_{\rm obs}$-derivative of the expression in square brackets and then replace $P_{\rm obs}$ with $P_{\rm act}$. It is important to re-iterate that Equation \ref{eqn:n-Pact_from_n-Pobs} assumes $\Gamma_{\rm act}$ independent of $P_{\rm act}$, a limitation upon which we will improve below.  It's clear that applying Equation \ref{eqn:n-Pact_from_n-Pobs} to the $n(P_{\rm obs})$ from Equation \ref{eqn:n-obs_from_uniform_n-Pact} recovers the original uniform distribution. Considering field studies, \cite{Jackson_2015} \citet{Jackson_2015}  reported a distribution $n(P_{\rm obs}) \sim P_{\rm obs}^{-2}$, which Equation \label{eqn:n-Pact_from_n-Pobs} indicates would arise from $n(P_{\rm act}) \sim P_{\rm act}^{-1}$.