Significance

Soil microorganisms drive C flux through the terrestrial biosphere, and models that predict terrestrial C flux can benefit by accounting for microbial ecophysiology in soils. However, characterizing the ecophysiology of microbes that mediate C decomposition in soil has proven difficult due to their overwhelming diversity. We characterized microbial C metabolism in soil and show that different types of C have distinct decomposition dynamics governed by different microbial lineages. For example, we found that uncharacterized microbial taxa, which are cosmopolitan in soils, assimilated cellulose-C into DNA. These microbes may drive cellulose decomposition on a global scale. We identify microbial lineages engaging in labile and structural C decomposition and explore their ecological properties.