Chuck table refs  over 9 years ago

Commit id: 2886746b0cde5cfd563ee40eb3608851568f761c

deletions | additions      

       

1929 who named it for its cellulose degrading abilities  \citep{boone2001bergeys}. All $^{13}$C-cellulose responding  \textit{Proteobacteria} share high sequence identity with 16S rRNA genes from  sequenced cultured isolatets (Table XX) (Table~\ref{tab:cell})  except for OTU.442 (best cultured isolate match 92\% sequence identity in the \textit{Chrondomyces} genus) and  OTU.663 (best cultured isolate match outside \textit{Proteobacteria} entirely,  \textit{Clostridium} genus, 89\% sequence identity). Some 

identity (97\%) with an isolate from Norway tundra soil \citep{Jiang_2011}  although growth on cellulose was not assessed for this isolate. Only one other  $^{13}$C-cellulose responding verrucomicrobium shared high DNA sequence  identity with a sequenced type strain, ``OTU.638'' (Table XX) (Table~\ref{tab:cell})  with \textit{Roseimicrobium gellanilyticum} (100\% sequence identity).  \textit{Roseimicrobium gellanilyticum} grows on soluble celluose  \citep{Otsuka_2012}. The remaining $^{13}$C-cellulose \textit{Verrucomicrobia} 

\citep{Di_Rienzi_2013}. Although we highlight $^{13}$C-cellulose responders  that share high sequence identity with described genera, most  $^{13}$C-cellulose responders uncovered in this experiment are not closely  related to cultured isolates (Table~XX). (Table~\ref{tab:cell}).  \subsection{Putative spore-formers in the Firmicutes assimilate $^{13}$C from  xylose within first day after soil amendment followed by Bacteroidetes and then 

All of the $^{13}$-xylose responders in the \textit{Firmicutes} phylum are  closely related (at least 99\% sequence idetity) to cultured isolates from  genera that are known to form endospores (Table XX). (Table~\ref{tab:xyl}).  Each responder is closely related to strains annotated as members of \textit{Bacillus},  \textit{Paenibacillus} or \textit{Lysinibacillus}. \textit{Bacteroidetes}  $^{13}$C-xylose responders are predominantly closely related to 

\textit{Actinobacteria} $^{13}$C-xylose responders are in the  \textit{Micrococcales} order. One $^{13}$C-xylose responding  \textit{Actinobacteria} OTU shares 100\% seqeunce identity with  \textit{Agromyces ramosus} (Table~XX). (Table~\ref{tab:xyl}).  \textit{Agromyces ramosus} is a known predatotry bacterium but is not dependent on a host for growth in culture  \citep{16346402}. It is not possible to determine the specific origin of assimilated  $^{13}$C in a DNA-SIP experiment. The isotopically labeled C can be passed down 

$^{13}$C-xylose responders are generally more abundant members based on relative abundance in bulk DNA SSU rRNA gene content than $^{13}$C-cellulose responders (Figure~XX, p-value).  However, both $^{13}$C-xylose and $^{13}$C-cellulose responders were found in abundant and   rare OTUs (Figure~XX). For instance, a \textit{Delftia} $^{13}$C-cellulose responder is fairly  abundant in the bulk samples ("OTU.5", Table~XX) Table~\ref{tab:cell})  with a mean bulk rank of 13 (\textit{i.e.} on average the 13th most abundant OTU) and a $^{13}$C-xylose responder ("OTU.1040, Table~XX) Table~\ref{tab:xyl})  has a mean abundance in bulk relative abundance in samples of 2.85e$^{-05}$. Only one substrate  responder ($^{13}$C-cellulose) was not found in any bulk samples ("OTU.862", Table~XX). Table~\ref{tab:cell}).  Of the top 10 responders sorted by descending mean rank (essentially the 10 most abundandant responders in the bulk samples), 8 are $^{13}$C-xylose responders and 5 of these 8 have mean ranks less than  10 in bulk samples.