Gianluigi Filippelli edited IQuO.tex  over 9 years ago

Commit id: 23851f662aa619b820614ed1caa595ac3b5d9c65

deletions | additions      

       

\subsection{The intrinsic quantum oscillators}\label{iquo}  %  It is known that the most basic field structure (whatever it may be its nature) is the scalar field; then we will say that any observer in their frame reference in order to describe the Universe, in its \emph{most basic} form, uses a scalar field, which we specifically denoted by $\Xi$.\\  It's obvious that $\Xi$ may be represented in any reference system by the scalar field $\Xi (x, y, z, t)$, where $(x, y, z, t)$ are the coordinates defined in that reference system. Therefore to treat the Universe-(ST) as an \emph{object-field} we start to define an elementary scalar field $\Xi$, whose basic oscillators will be called Intrinsic Quantum Oscillator (IQuO) \cite{Guido_2012}. \cite{guido2014}.  The elementary structure of $\Xi$ is a set of 1-dimensional chains af IQuOs elastically coupled, where the \emph{quanta} associated to this \emph{Fundamental Field} \emph{fundamental field}  can propagate themselves.\\ Thefollowing  figure \ref{fig_iquo_lattice}  makes us better understand this definition: a scalar field with a system of beads that are mutually linked by springs:\\  (figure spring layer)\\ springs.\\  %\label{fig_iquo_lattice}  Here we summarize some fundamental aspects of the IQuOs, that will be recalled in the present paper.\\  First of all we explain the origin of the idea behind In \cite{guido2014} one proves that  theIQuO. The  elastic coupling between quantum oscillators, which builds a field, transforms even  each individual\emph{isolated} quantum field  oscillator in a coupled oscillator. This makes each field oscillator a \emph{forced} oscillator, that, following the oscillations, is one  described by two components: the absorptive amplitude inertial  and the elastic amplitude (see ref. [3]).\\  In the phase plane $(q, \, p)$ we have:  \begin{equation}  q(t) = q_{el} (0) \cos (\omega t) + q_{abs} (0) \sin (\omega t)  \end{equation}  Using operators. it becames:  \begin{equation}  \hat{q} (t) = \hat{q}_{el} (0) \cos (\omega t) + \hat{q}_{abs} (0) \sin (\omega t)  \end{equation}  That we can draw in this way:\\  (figure)\\  And one elastic. So,  the field of the  quantum oscillator will no longer described by the pair of operators $a$, $a^+$ \begin{align} \begin{align}\nonumber  a_t = a_0 \text{e}^{-i \omega t}\\  a_t^+ = a_0^+ \text{e}^{i \omega t} \nonumber  \end{align}  but by two pair of operators $(a_{el}, \, a_{el}^+)$, $(a_{in}, \, a_{in}^+)$, where the absorptive component overlaps the inertial component.  \begin{align}\label{eq:pairelin} component (see figure \ref{fig_iquo}).  \begin{align}\label{eq_new_qo_operators}  a_t = a(t)_{elastic} + a(t)_{inertial} = a_{el} \text{e}^{-i \omega t} + a_{in} \text{e}^{-i (\omega t - \pi/2)}\\  a_t^+ = a^+(t)_{elastic} + a^+(t)_{inertial} = a_{el}^+ \text{e}^{i \omega t} + a_{in}^+ \text{e}^{i (\omega t - \pi/2)} \nonumber  \end{align}  (Graphical representation of the operators \ref{eq:pairelin}: the inertial pair $(a_{in}, \, a_{in}^+)$ is shifted of $\frac{\pi}{2}$ than the elastic pair $(a_{el}, \, a_{el}^+)$)\\ %\label{fig_iquo}  This double structure of the operators $a$, $a^+$ splits the energy quanta of the quantum oscillator,given by:  \begin{equation}  \hat {H} = \left ( \hat{a}^+ \hat{a} + \frac{1}{2} \right ) \hbar \omega = \left ( \hat{n} + \frac{1}{2} \right ) \hbar \omega  \end{equation}  that becames \begin{equation}  H_n = U_n + K_n = \left ( U_n \right )_{el} + \left ( K_n \right )_{in} = (2n+1) \left ( \frac{1}{4} \hbar \omega \right )_{el} + (2n+1) \left ( \frac{1}{4} \hbar \omega \right )_{in}  \end{equation}  The splitting of the oscillator is shown also in the form of the wave function $\psi$ of the quantum oscillator: we observe the presence in $\psi$ of a pair of peaks in the probability of detecting the quantum of the oscillation that we will describe as well as composed of two sub-units of oscillation (sub-oscillators).\\  (figure)\\ (sub-oscillators, see figure \ref{fig_suboscillators}).\\  % \label{fig_suboscillators}  An IQuO ($\varepsilon_n = \left ( n+\frac{1}{2} \right ) h \nu$) will be represented by empty half-quantum ($\varepsilon (\circ) = \frac{1}{4} h$), and full half-quantum ($\varepsilon (\bullet) = \frac{1}{2} h$); so $\varepsilon_n = \left ( n+\frac{1}{2} \right ) h \nu = ( n (\frac{1}{2} + \frac{1}{2}) + \frac{1}{4} + \frac{1}{4} ) h$.\\  We can represent the annihilation operator $a$, and the creation operator $a^+$ using the full half-quantum $\bullet$ and the empty half-quantum $\circ$.  \begin{equation} %\begin{equation}  %  B_1 = \left ( %  \begin{array}{cc} %  \hat{a}_{el} \equiv \full_{el} & \hat{a}_{in} \equiv \empt_{in}\\ %  \hat{a}^+_{el} \equiv \empt^+_{el} & \hat{a}_{in} \equiv \full^+_{in} %  \end{array} %  \right ) \Leftrightarrow %  B_2 = \left ( %  \begin{array}{cc} %  \hat{a}_{el} \equiv \empt_{el} & \hat{a}_{in} \equiv \full_{in}\\ %  \hat{a}^+_{el} \equiv \full^+_{el} & \hat{a}_{in} \equiv \empt^+_{in} %  \end{array} %  \right ) \end{equation}  or, %\end{equation}  %or,  in a more classical representation: \begin{align}  \hat{a}_{1, r'}^+ (t) = & \, \full^+_{el} \text{e}^{i r' \omega t} + \empt^+_{in} \text{e}^{i (r' \omega t - \frac{\pi}{2})}\\  \hat{a}_{1, r'} (t) = & \, \empt^+_{el} \text{e}^{-i r' \omega t} + \full^+_{in} \text{e}^{-i (r' \omega t - \frac{\pi}{2})} \nonumber  \end{align}  (Bidimensional graphical representation of the IQuO $(a_{el}, \, a_{el}^+)$, $(a_{in}, a_{in}^+)$)\\  One % \label{fig_iquo01}  %One  of the advantages in treating the field oscillators in terms of IQuOs is that the bidimensional representation (fig. 4*) (figure \ref{fig_iquo01})  allows to distinguish the direction of rotation of the phase associated with oscillations. In [art 1] \cite{guido2014}  has showed that the two directions of rotation emerge in the physical world as the two signs associated with the electric charge. This important result marks a turning point in the understanding of the physics of the interactions.\\ So the egenstates $\left | 0 \right >$, $\left | 1 \right >$ will be:  \begin{subequations}  \begin{align}  \left | 0 \right > & = \binom{\circ_{el}}{\circ_{in}}\\ \binom{\circ_{el}}{\circ_{in}} \label{eq-eigenstate0}\\  \left | 1 \right > & = \binom{\circ_{el}}{\bullet_{in}} + \binom{\bullet^+_{el}}{\circ^+_{in}} \nonumber \label{eq-eigenstate1}  \end{align}  \end{subequations}  % \label{fig_eigenstates}  A field line (gone through by a quantum $\bullet + \bullet$ and with different values of frequency) will be represented by the following scalar field:  \begin{equation}  \hat{\Phi}_R = \sum_k \omega_k \left ( \hat{a}_k \text{e}^{-i \hat{r} \omega_k t + \alpha} + \hat{a}_{-k} \text{e}^{i \hat{r} \omega_k t + \alpha} \right ) \text{e}^{ikx}  \end{equation}  with where (see also the figure \ref{fig_iquo_chain})  \begin{align}  \left ( \hat{a}_{-k}^+ (t) \right )_{r'=-1} = & \left ( \full_{el}^+ \right )_{-k} + \left ( \empt_{in}^+ \right )_{-k} \text{e}^{-i \frac{\pi}{2}} \quad \text{clockwise}\\ \text{clockwise} \label{eq-iquochain01}\\  \left ( \hat{a}_k (t) \right )_{r'=-1} = & \left ( \empt_{el} \right )_k + \left ( \full_{in} \right )_k \text{e}^{-i \frac{\pi}{2}} \quad \text{anticlockwise} \nonumber  \end{align}  % \label{fig_iquo_chain}  If the vacuum state of the field is represented by coupling empty oscillators with energy $\varepsilon_0 = \frac{1}{2} h \nu$, in the IQuO-representation the empty state of an IQuO's field will be $\varepsilon_0 = 2 ( \frac{1}{4} + \frac{1}{4} ) h$.\\  And So,  the creation and annihilation operators: operators will be (see the figure \ref{fig_iquo_chain01}):  \begin{align}  \left ( \hat{a}_{-k}^+ (t) \right )_{r'=+1} = & \left ( \empt_{el}^+ \right )_{-k} + \left ( \empt_{in}^+ \right )_{-k} \text{e}^{-i \frac{\pi}{2}}\\ \frac{\pi}{2}} \label{eq-iquochain02}\\  \left ( \hat{a}_k (t) \right )_{r'=+1} = & \left ( \empt_{el} \right )_k + \left ( \empt_{in} \right )_k \text{e}^{-i \frac{\pi}{2}} \nonumber  \end{align}  % \label{fig_iquo_chain01}  And the vacuum state of an “isolated” \emph{isolated}  IQuO will be graphically represented:\\  (figure)\\  With operators: represented by the following operators (see also the figure \ref{fig_iquo_vacuum_state}):  \begin{align}  \hat{a}_{1, r'}^+ (t) = & \, \empt^+_{el} \, \text{e}^{i r' \omega t}\\  \hat{a}_{1, r'} (t) = & \, \empt_{in} \, \text{e}^{-i \left ( r' \omega t - \frac{\pi}{2} \right )}  \end{align}  % \label{fig_iquo_vacuum_state}  However, there is another chance to construct the vacuum state, which is not described in the \emph{classical} theory of quantum fields: because a vacuum quantum oscillator is composed of a sub-oscillator, then we can assume the existence of a configuration of not coupled empty sub-oscillators, given by\\  (figure)\\ by the figure \ref{fig_theta}.\\  % \label{fig_theta}  The set of not coupled uncoupled  vacuum sub-oscillators determines a physical system $\Theta$ equipped with energy but without the presence of a field, that we call \emph{quantum vacuum of no-field}.\\ In the same way, the state $\Phi$ of vacuum of no-field $\Theta$, any sub-oscillator will be:  \begin{equation}  \hat{\Phi}_\Theta = \binom{\empt^+(t)_{el}}{\empt(t)_{in}}_\Theta = \binom{\empt^+(t)_{in}}{\empt(t)_{el}}_\Theta 

\binom{\empt^+_n (\omega_1)_{el}}{\empt_n (\omega_1)_{in}} & \cdots & \binom{\empt^+_n (\omega_m)_{el}}{\empt_n (\omega_m)_{in}}  \end{array} \right )  \end{equation}  Where any element of the matrix represent a particular sub-oscillator with $\omega$ $\omega_i$  frequency.