Melanie edited bibliography/biblio.bib  about 8 years ago

Commit id: fb2fff46f55de3f3051c8454c2bff6e953bbb57c

deletions | additions      

       

Any changes to this file will be lost if it is regenerated by Mendeley.  BibTeX export options can be customized via Options -> BibTeX in Mendeley Desktop  @article{Behrendt2016,  author={M. Behrendt and A. Burkert and M. Schartmann},  title={Clusters of Small Clumps Can Explain the Peculiar Properties of Giant Clumps in High-redshift Galaxies},  journal={The Astrophysical Journal Letters},  volume={819},  number={1},  pages={L2},  url={http://stacks.iop.org/2041-8205/819/i=1/a=L2},  year={2016},  abstract={Giant clumps are a characteristic feature of observed high-redshift disk galaxies. We propose that these kiloparsec-sized clumps have a complex substructure and are the result of many smaller clumps self-organizing themselves into clump clusters (CCs). This bottom-up scenario is in contrast to the common top-down view that these giant clumps form first and then sub-fragment. Using a high-resolution hydrodynamical simulation of an isolated, fragmented massive gas disk and mimicking the observations from Genzel et al. at z ∼ 2, we find remarkable agreement in many details. The CCs appear as single entities of sizes ##IMG## [http://ej.iop.org/images/2041-8205/819/1/L2/apjl522782ieqn1.gif] {${R}_{\mathrm{HWHM}}\;\simeq \;$} 0.9–1.4 kpc and masses ∼(1.5–3) ##IMG## [http://ej.iop.org/images/2041-8205/819/1/L2/apjl522782ieqn2.gif] {$\times \quad {10}^{9}\ {M}_{\odot }$} , representative of high- z observations. They are organized in a ring around the center of the galaxy. The origin of the observed clumps’ high intrinsic velocity dispersion ##IMG## [http://ej.iop.org/images/2041-8205/819/1/L2/apjl522782ieqn3.gif] {${\sigma }_{\mathrm{intrinsic}}\;\simeq \;$} 50–100 ##IMG## [http://ej.iop.org/images/2041-8205/819/1/L2/apjl522782ieqn4.gif] {$\mathrm{km}\;{{\rm{s}}}^{-1}$} is fully explained by the internal irregular motions of their substructure in our simulation. No additional energy input, e.g., via stellar feedback, is necessary. Furthermore, in agreement with observations, we find a small velocity gradient ##IMG## [http://ej.iop.org/images/2041-8205/819/1/L2/apjl522782ieqn5.gif] {${V}_{\mathrm{grad}}\quad \simeq $} 8–27 ##IMG## [http://ej.iop.org/images/2041-8205/819/1/L2/apjl522782ieqn6.gif] {$\mathrm{km}\;{{\rm{s}}}^{-1}\;{\mathrm{kpc}}^{-1}$} along the CCs in the beam-smeared velocity residual maps, which corresponds to net prograde and retrograde rotation with respect to the rotation of the galactic disk. The CC scenario could have strong implications for the internal evolution, lifetimes, and the migration timescales of the observed giant clumps, bulge growth, and active galactic nucleus activity, stellar feedback, and the chemical enrichment history of galactic disks.}  }  @article{Elmegreen2005,  author={Debra Meloy Elmegreen and Bruce G. Elmegreen and Douglas S. Rubin and Meredith A. Schaffer},  title={Galaxy Morphologies in the Hubble Ultra Deep Field: Dominance of Linear Structures at the Detection Limit},