Demian Arancibia edited untitled.tex  almost 9 years ago

Commit id: d9508cc27de64880cadbd6ea15ada38bcf322985

deletions | additions      

       

\Delta I_m = {\frac{1}{\eta_s }}{\frac{SEFD}{\sqrt{2 \Delta \nu \tau_{acc}}}}   \end{equation}  in units of Janskys per synthesized beam area.   with $\eta_s$ most important factor being correlator efficiency $\eta_c = \frac{\text{correlator sensitivity}}{\text{sesitivity of a perfect analog correlator having the same }\Delta t}$ (Crane & Napier 1989). (see \citet{sensitivity}).  \subsubsection{Minimize SEFD}  \begin{equation}\label{eq:system_equivalent_flux_density}  SEFD = {\frac{T_{sys}}{\frac{\eta_a A}{2k_B}}}  \end{equation}  where $T_{sys}$ is the system temperature including contributions from receiver noise, feed losses, spillover, atmospheric emission, galactic background and cosmic background, $k_B = 1.380 \times 10^{-23}$ Joule $K^{-1}$ is the Boltzmann constant, $A$ is the antenna collecting area, and $\eta_a$ is the antenna efficiency with $\eta_a = \eta_{surface} \cdot \eta_{blockage} \cdot \eta_{spillover} \cdot \eta_{taper}$ (see \cite{sensitivity}). \citet{sensitivity}).  \subsection{Minimize Operations Costs}  The operations cost is a complex problem divided in the sub-problems in this section.  \subsubsection{Minimize Maintenance Costs} 

Tricky because you can compensate antenna quality with software. So the equations must capture this trade off.  \bibliographystyle{acm}   \bibliography{bibfile}