Demian Arancibia edited untitled.tex  almost 9 years ago

Commit id: a707664a78da993f063044077d4297359bdfbe44

deletions | additions      

       

\usepackage{mathtools}  \section{Overview}  This document presents a parametric model to help design an Interferometric Array. It describes the relationship of design parameters in section 2 with performance objectives in section 3.   In particular, this document focus in providing a quick guide to understand the parameter and objectives selection for the reader to both assess completeness of the model, and accuracy of the mathematical relationships as well. 

\begin{equation}\label{eq:system_equivalent_flux_density}  SEFD = {\frac{T_{sys}}{\frac{\eta_a A}{2k_B}}}  \end{equation}  where $T_{sys}$ is the system temperature including contributions from receiver noise, feed losses, spillover, atmospheric emission, galactic background and cosmic background, $k_B = 1.380 \times 10^{-23}$ Joule $K^{-1}$ is the Boltzmann constant, $A$ is the antenna collecting area, and $\eta_a$ is the antenna efficiency with $\eta_a = \eta_{surface} \cdot \eta_{blockage} \cdot \eta_{spillover} \cdot \eta_{taper}$ (Crane & Napier 1989). (see \cite{sensitivity}).  \subsection{Minimize Operations Costs}  The operations cost is a complex problem divided in the sub-problems in this section.  \subsubsection{Minimize Maintenance Costs} 

\end{thebibliography}