Demian Arancibia edited untitled.tex  almost 9 years ago

Commit id: 5fa6b8127a112c8950a62f91cb73068cc18d6541

deletions | additions      

       

where $T_{sys}$ is the system temperature including contributions from receiver noise, feed losses, spillover, atmospheric emission, galactic background and cosmic background, $k_B = 1.380 \times 10^{-23}$ Joule $K^{-1}$ is the Boltzmann constant, $A$ is the antenna collecting area (thus we could also write $\pi \cdot D^2$), and $\eta_a$ is the antenna efficiency with $\eta_a = \eta_{\text{surface efficiency}} \cdot \eta_{\text{aperture blockage}} \cdot \eta_{\text{feed spillover efficiency}} \cdot \eta_{\text{illumination taper efficiency}}$ (see \cite{antenna}).  \subsection{Minimize Operations Costs}  The operations cost is a complex problem divided in the sub-problems in this section.  \subsubsection{Minimize Maintenance Costs}  \subsubsubsection{Maximize \subsubsection{Maximize  components reliability} \subsubsubsection{Minimize \subsubsection{Minimize  components complexity} \subsubsection{Minimize CalibrationCosts}  \subsubsubsection{Minimize Calibration  Software Costs} \subsubsubsection{Minimize \subsubsection{Minimize  Calibration Hardware Costs} \subsubsection{Data Processing Cost}  \subsubsubsection{IF \subsubsection{IF  Transmission Cost} Being $B$ average baseline lenght, $N$ number of antennas, we have an equation for IF Transmission with  \begin{equation}\label{eq:IF_Tx_cost}  \text{IF Transmission Cost} = 8BN + 30N + 400  \end{equation}  \subsubsubsection{Correlator \subsubsection{Correlator  Cost} \begin{equation}\label{eq:correlator}  \text{Correlator cost} = 2N^2 + 112N +1360  \end{equation}  \subsubsection{Data Transmission Cost}  \subsubsection{Power Consumption Cost}  \subsubsection{Re-configuration Systems Operation Cost}  \subsection{Minimize Up-front Costs}