Demian Arancibia edited untitled.tex  almost 9 years ago

Commit id: 581acde55f13b24c1183d442ef1556a7ffe1126f

deletions | additions      

       

\subsubsection{Re-configuration Systems Operation Cost}  \subsection{Up-front Costs}  \subsubsection{Cost of Antennas Construction}  A commonly used rule of thumb for the cost of an antenna is that it is proportional to $D^{\alpha}$, where $\alpha \approx 2.7$ for values of $D$ from a few meters to tens of meters. meters  (see \cite{moran}) \cite{moran}). For $N$ antennas of diameter $D$ meters with accuracy $\frac{\lambda}{16}$, where $\lambda$ is in millimeters.  \begin{equation}\label{eq:antenna_cost}  \text{Antenna Cost} = \frac{890N(\frac{D}{10})^2.7}{(\lambda^0.7)} + 500  \end{equation}  \subsubsection{Cost of Antenna Electronics}  \subsubsection{Cost of Re-configuration Systems Construction}  \subsubsection{IF Transmission Cost}  Being $B$ average baseline lenght length  and $N$ number of antennas, we define could use \cite{mmadesign}  IF Transmission cost as: as an upper limit:  \begin{equation}\label{eq:IF_Tx_cost}  \text{IF Transmission Cost} = 8BN + 30N + 400  \end{equation}  see \cite{mmadesign}  \subsubsection{Correlator Cost}  Using $N$ as number of antennas, we could use \cite{mmadesign} Correlator Cost as an upper limit:  \begin{equation}\label{eq:correlator}  \text{Correlator cost} = 2N^2 + 112N +1360  \end{equation}