Demian Arancibia edited untitled.tex  almost 9 years ago

Commit id: 317098b74650353c80facfcee74fe63db9e5953b

deletions | additions      

       

\subsubsection{Efficiency}  We will use $\eta_a$ in this document as the antenna efficiency with   \begin{equation}\label{eq:antenna_efficiency}  \eta_a = \eta_{\text{surface efficiency}} eff.}}  \cdot \eta_{\text{aperture blockage}} \cdot \eta_{\text{feed spillover efficiency}} eff.}}  \cdot \eta_{\text{illumination taper efficiency}} eff.}}  \end{equation} as defined in \cite{antenna}.  \subsubsection{Quantity}  We will use $N$ in this document as the number of array elements. 

We will use the geographic latitudes and longitudes to establish pad location in this document. We will calculate the length of the possible baselines using pad positions. We will also calculate length and complexity of the roads, fiber and power networks needed using pad positions. We will use $B$ as the maximum array element separation in any single configuration.  \subsection{Receiver Aspects}  \subsubsection{Bandwidth}  We will use $\lambda_{max} - \lambda_{min}$ as the array bandwidth for this document. This assumes Assuming  the array is, or can be, instrumented for operation at wavelengths $\lambda$, where $\lambda_{min} \leqslant \lambda \leqslant \lambda_{max}$. Then the bandwidth is $\lambda_{max} - \lambda_{min}$.  \subsubsection{Temperature}  \subsubsection{Efficiency}  \subsection{Correlator Aspects}