Edwin E. Quashie edited Figure_ref_fig_fit_graph_shows__.tex  over 8 years ago

Commit id: f1faa1cf79e407de1b08ecb4c42e4b1ad5aaa71e

deletions | additions      

       

Figure \ref{fig:fit_graph} shows explains  howwe obtained  the slopes of Figure \ref{fig:energy_distance}. In Figure \ref{fig:fit_graph}, \ref{fig:energy_distance} are evaluated. Here  the magenta dot-dash (magenta)  curve shows represents  the adiabatic potential energy surface (APES) curve at $v = 0 ~\mathrm{a.u.}$;which is obtained  due to the Born-Oppenheimer approximation. The oscillations in the curves reflect the periodicity of the $\mathrm{Cu}$ lattice. At $v = 0 ~\mathrm{a.u.}$, there is no transfer of energy, just oscillations of the total energy with a zero slope. To obtain the slope for $v = 0.06 ~\mathrm{a.u.}$ which represents the $S_\text{e}$ at this velocity,we subtract  the adiabatic curve results  ($v = 0 ~\mathrm{a.u.}$) are subtracted  from those of  $v = 0.06$curve due to the non-adiabatic effect at velocities greater than $0 ~\mathrm{a.u.}$  to obtain only  the red non-adiabatic contributions; it is shown as a solid  line curve (red)  with little oscillations. This subtraction is done to remove the oscillations that result from the periodic lattice. A linear fit , $y = a + bx$ (blue line) gives bx$, dash line (blue) yields  a slope of $0.00698913~E_\text{h}/a_0$ with an error of $\pm 6.936 \times 10^{-5}~E_\text{h}/a_0$. We then proceed to do a linear fit in addition to an oscillatory function $y = a + bx + A\cos(k x + \phi)$ (black line) \phi)$, dot line (black)  to capture any remnant oscillation. This oscillation fit gives generates  a slope of $0.00743456~E_\text{h}/a_0$ with an error of $\pm 8.52 \times 10^{-7}~E_\text{h}/a_0$. For higher velocities, a linear fit alone is enough to obtain reasonable error values.%