Edwin E. Quashie edited Along_the_simulation_we_monitor__.tex  over 8 years ago

Commit id: ae650ae33deb47b2e3793c19d958255d5ed750ea

deletions | additions      

       

\label{eq:tdks1}   \end{equation}  The Kohn-Sham (KS) effective potential$V_\text{KS}[n(t), \{\mathbf R_J(t)\}_J](\mathbf r, t)$  is given as \begin{equation}  \begin{aligned}  V_\text{KS}[n, \{\textbf R_J(t)\}_J] V_\text{KS}[n(t), \{\mathbf R_J(t)\}_J](\mathbf r, t)  = \textit{V}_\text{ext}[\mathbf{R}_J(t)\}_J] + \textit{V}_\text{H}[n] + V_\text{XC}[n] \label{eq:tdks3}  \end{aligned}  \end{equation} 

where the external potential is $V_\text{ext}[\{\mathbf{R}_J(t)\}_J](\mathbf{r}, t)$ due to ionic core potential (with ions at positions $\mathbf R_J(t)$), $V_\text{H}(\mathbf{r}, t)$ is the Hartree potential comprising the classical electrostatic interactions between electrons and $V_\text{XC}[n](\mathbf{r}, t)$ denotes the exchange-correlation (XC) potential.   The spatial and time coordinates are represented by $\mathbf{r}$ and $t$ respectively.   At time $t$ the instantaneous density is given by $n(\mathbf{r}, t) = \sum_i |\psi_i(\mathbf{r}, t)|^2$.  The XC potential used in this study is due to Perdew-Burke-Ernzerhof (PBE) ~\cite{Perdew_1992,Perdew_1996}, using a norm-conserving Troullier-Martins pseudopotential, with $17$ explicit electrons per $\mathrm{Cu}$ atom (not necessarily all 17 electrons participate in the process as we will discuss later). %V_\text{KS}[n, \{\textbf R_J(t)\}_J] = \textit{V}_\text{ext}[\mathbf{R}_J(t)\}_J] + \textit{V}_\text{H}[n] + V_\text{XC}[n]