Edwin E. Quashie edited We_observe_in_Fig_ref__.tex  over 8 years ago

Commit id: 89104ee68c1df1c7efd603923c873e53edc7d629

deletions | additions      

       

\end{equation}  (which assumes a proton effective charge of $Z_1 = 1$).  As shown in Fig.~\ref{fig:log_stopping_power}, for $v < 0.1~\mathrm{a.u.}$ the results mimics the response of an effective electron gas with one electron per $\mathrm{Cu}$ atom.  The resulting curves shown in Fig.~\label{fig:} Fig.~\ref{fig:log_stopping_power}  agree with the shows that for $v > 0.3~\mathrm{a.u.}$ at least the 11 electrons per atom (full valence) behaves as the stopping electron gas. We observe $S_\text{e}$ kink around $v \sim 0.1 ~\mathrm{a.u.}$ due to a mixture of $d$-band in the electronic density of states.   For energy loss our new results for $v \leq 0.06~\mathrm{a.u.}$, are primarily due to $s$-band electrons.   In the simulation we directly show a crossover region between the two linear regimes, and we find that the friction in direct proportion to the velocity with a power law of with exponent $1.455$.