Edwin E. Quashie edited Figure_ref_fig_stopping_power_shows__.tex  over 8 years ago

Commit id: 5fb4280403404a0d71c333864b2fd3e887cb17f3

deletions | additions      

       

A linear dependency of the stopping power on the target material is evident in Figure \ref{fig:stopping_power}. It is also observed that if applied density is lower than the experimental value, the stopping power gets lower.   On the other hand if our calculated density remains close to experimental values, the prediction of the stopping powers by TDDFT improves.   Our results show good agreement with Markin \emph{et al.} \cite{Markin_2009} but there are disagreement with those of Cantero \emph{et al.} \cite{Cantero_2009}. We observe $S_\text{e}$ kink  around $v \sim 0.1 ~\mathrm{a.u.}$ due to a mixture of d-band in the electronic density of states. For energy loss our new results for $0.01 \leq v \leq 0.06~\mathrm{a.u.}$, are primarily due to s-band electrons. Lack of experimental findings preclude a direct comparison. A model calculation [Ref.] \cite{Correa_private}  including the density of states distrutions distributions  confirm this.% %In the same figure we compare our results with density $6.84~\mathrm{g/cm^3}$ and $8.96~\mathrm{g/cm^3}$.%  %