Namgyun Lee added paragraph_Sparse_MRI_Appendix_A__.tex  about 8 years ago

Commit id: 7e52f7bbf6a8a33160a3a81e6cb3f8a8300b8c3c

deletions | additions      

         

\paragraph{Sparse MRI Appendix A revisited}  Here we provide a detailed derivation of the gradient of each term in the cost function  defined in Equation [A1].  \section{Theory}  \subsection{Image Reconstruction}  %\usepackage{amsmath}   \DeclareMathOperator*{\argmin}{argmin}  \newcommand{\complex}{\mathbb{C}}  \newcommand{\nc}{n_c}  \newcommand{\nf}{n_f}  %\paragraph{Image Reconstruction}  The reconstruction is obtained by solving the following unconstrained convex optimization problem:  \begin{align*}  x = \argmin_m \|\tilde F_\Omega \tilde Sm - y\|_{\ell_2}^2 + \lambda_1\|Vm\|_{\ell_1} + \lambda_2\|\Psi m\|_{\ell_1} + \lambda_3\|T_v m\|_{\ell_1},  \end{align*}  where $\tilde F_\Omega = [\tilde F_0, \ldots, 0; 0, \ldots,\tilde F_{\nc-1}]$ is the undersampled Fourier operator, $\tilde S = [\tilde S_0, \ldots, 0; 0, \ldots,\tilde S_{\nc-1}]$ is the sensitivity matrix, $y = [y_0, \ldots, y_{\nc-1}]^T$ is the acquired 4-D k-space data, $V$ is a 1-D spectral high-pass filter along the saturation frequency dimension, $\Psi$ is a 4-D wavelet transform, and $T_v$ is a 3-D spatial finite-differences transform.  3-D coil sensitivity maps for each 3-D image of a 4-D CEST dataset were separately estimated from a fully sampled region in the center of 3-D k-space using a 3-D extension of the eigenvalue problem approach to sensitivity maps (calibration region: XX, kernel size: XX, $\sigma_{\mathrm{cut-off}}^2 = XX$, threshold: XX) \cite{Uecker_2013}.