Meredith L. Rawls edited Stellar atmosphere model.tex  over 9 years ago

Commit id: 8b319f0cbdf9bc2c39ef1ceca02f9402427ebe4d

deletions | additions      

       

\section{Stellar atmosphere model}\label{atm}  \subsection{Spectral disentangling}\label{disentangle}  Disentangled with FDBinary \citep{ili04}. Before the two stars' atmospheres can be modeled, it is necessary to extract each star's spectrum from the observed binary spectrum. While the location of a set of absorption lines in wavelength space is the only requirement for radial velocity studies, using an atmosphere model to measure $T_{\rm{eff}}$, $\log g$, and metallicity for each star requires precise equivalent widths of particular absorption lines.  WRITE MORE HERE  \subsection{Stellar parameters}\label{parameters}  We To accomplish this, we  use the radiative transfer code MOOG \citep{sne73} to derive $T_{\rm{eff}}$, $\log g$, FDBinary tool \citep{iji04} on the spectral window 5402--6750 \AA. Following the approach in \citet{bec14}, we break the window into 26 pieces that each span about 10 \AA. FDBinary does not require a template spectrum,  and metallicity for instead uses  the two red giants.  \begin{itemize}  \item Identify metallicity-sensitive Fe lines orbital parameters of a binary system to separate spectra  in Fourier space. We use orbital parameters from a preliminary set of photodynamical models, which are later refined with stellar atmosphere models (see Section \ref{model}). FDBinary requires orbital period, phase zeropoint, eccentricity, longitude of periastron, and amplitudes of  each star's radial velocity curve. We set these to 171.277697 days, 5170.514777 days, 0.36, 18 degrees, and 34 km/s. All 23 observed spectra are processed together, and the result is the pair of  disentangled spectrum spectra  with ARES  \item Then, run MOOG  \end{itemize}  IN PROGRESS zero radial velocity shown in Figure \ref{twospectra}.