Meredith L. Rawls edited Stellar parameters.tex  almost 9 years ago

Commit id: 7f322e24ade06e3b3af3b02b019245874932d6f4

deletions | additions      

       

\subsection{Stellar parameters}\label{parameters}  We use the radiative transfer code MOOG \citep{sne73} to estimate $T_{\rm{eff}}$, $\log g$, and metallicity [Fe/H] for the disentangled spectrum of each star in KIC 9246715. First, we use the Automatic Routine for line Equivalent widths in stellar Spectra \citep[ARES,][]{Sousa_2007} with the Fe I and Fe II linelist from \citet{Yong_2005} UPDATE LINELIST CITATION INFO. ARES automatically measures equivalent widths for spectral lines which can then be used by MOOG. An excellent outline of the process is given by \citet{Sousa_2014}.  We use ARES to identify xx Fe I and xx Fe II lines in the spectrum of Star 1, and xx Fe I and xx Fe II lines in the spectrum of Star 2. SOMETHING ABOUT SIGMA CLIPPING TO SELECT 'GOOD' LINES. To arrive at a robust best-fit  stellar atmosphere model with MOOG, webegin with INPUT VALUES HERE and  follow the approach of \citet{mag13}. Error bars are determined with PROCESS HERE. based on the standard deviation of the derived abundances and the range spanned in excitation potential or equivalent width.  For Star 1, we find $T_{\rm{eff}} = 5097 \pm 0 \ \rm{K}$, $\log g = 3.14 \pm 0$, and $\rm{[Fe/H]} = 0.02 \pm 0$, with a microturbulence velocity of $1.53 \ \rm{km \ s}^{-1}$. For Star 2, we find $T_{\rm{eff}} = 5061 \pm 0 \ \rm{K}$, $\log g = 3.52 \pm 0$, and $\rm{[Fe/H]} = 0.02 \pm 0$, with a microturbulence velocity of $1.49 \ \rm{km \ s}^{-1}$. JEAN PLEASE FINISH THIS AND WRITE ABOUT IT! THIS!  Does it agree with ELC? Why/why not?