Charles Beck edited PH1 stable?.tex  about 9 years ago

Commit id: bbb4ba05d55f285849a5488b8d97f73aa07fb145

deletions | additions      

       

\end{itemize}  \subsection{Semimajor Axis Inner Region}  The planet's semimajor axis is approximately 0.634 AU. The eccentricity is $e \approx 0.0539$, and the mass ratio is $\mu=m_2 /(m_1 +m_2 )=0.408/(1.528+.408)=.211$. The binary semimajor axis is $a_b =0.1744$. So, using Holman & Wiegert's best fit equation: $a_c =[0.464+(-0.380)\mu +(-.631)e+(.586)\mu e +.15e^2 +(-0.198)\mu e^2 ]a_b $ we can find the critical semimajor axis,   \begin{equation}  a_c $a_c  =[0.464+(-0.380).211 +(-.631).0539+(.586)(.211) .0539 +.15(.0539^2)  +(-0.198)(.211) +.15(.0539^2)$  $+(-0.198)(.211)  .0539^2 ].1744=0.0622  \end{equation}. ].1744=0.0622$  So, $a \stackrel{?}{>} a_c$,  \begin{equation}  0.634 \stackrel{\checkmark}{>} 0.0622! 

\subsection{Semimajor Axis Outer Region}  The planet's semimajor axis, eccentricity, the stars' mass ratio, and semimajor axis are all the same as in the last equation. Using Holman & Wiegert's outer region best fit line: $a_c =1.6+5.1e+(-2.22)e^2 +4.12 \mu +(-4.27)e \mu +(-5.09)\mu ^2 +4.61e^2 \mu ^2 $ we get   \begin{equation}  a_c $a_c  =1.6+5.1e+(-2.22).0539^2 +4.12(.211) +(-4.27)(.0539)(.211) +(-5.09)  (.211^2 +(-4.27)(.0539)(.211)$   $+(-5.09)(.211^2  )+4.61(.0539^2 )(.211^2 )=3.921  \end{equation} )=3.921$  So, $a \stackrel{?}{>} a_c$,  \begin{equation}  0.634 \stackrel{x}{>} \ngtr  3.921 \end{equation}  which means for an outer region orbit, the planet is \textit{not} stable.