Jan Jensen edited section_Results_and_Discussion_subsection__.tex  over 8 years ago

Commit id: 294e3a3ba4c3285137ce1dd32ab17851425677e9

deletions | additions      

       

\section{Results and Discussion}  \subsection{Choice of functional and basis set}  When it comes to prediction of chemical shifts in proteins the most widely used functional appears to be B3LYP. For example, Zhu, He and Zhang \cite{Zhu_2012} used B3LYP/6-31G(d,p) to compute hydrogen and carbon chemical shifts for small proteins that correlate well with experimental measurements with $r$ values typically ≥ 0.98 when solvent effects are taken into account. Exner, Möller, and co-workers \cite{Exner_2012} have obtained similar results using B3LYP/6-31G(d) and even observed a correlation of 0.81 for the notoriously difficult amide N by averaging over several snapshots. Finally, Vila, Baldoni and Scheraga \cite{Vila_2009} did a systematic study of the effect of 10 functionals on CA C$\alpha$  chemical shifts in ubiquitin and found very little in performance with all R and RMSD values in the range 0.902 – 0.908 and 2.12 – 2.30 ppm. Interestingly, this study included functionals such as OB98 that are computationally less demanding than B3LYP. Vila, Scheraga and co-workers \cite{Vila_2009} subsequently observed that C$\alpha$ chemical shifts computed using smaller basis sets such as 6-31G correlate extremely well the chemical shifts computed using lager basis set such as 6-311+G(2d,p). We therefore decided to use the 6-31G(d,p) basis for our calculations and use the computationally efficient OPBE functional.