Christer Watson edited Analysis.tex  over 9 years ago

Commit id: 3532dca9edfd8592b46c4d70b0e677ddd91bceab

deletions | additions      

       

\begin{equation}  N_{tot} = \frac{I}{B_\nu(860 GHz) \mu m_H \kappa R_d}\\  B_\nu = \frac{2 h \nu^3}{c^2 (e^\frac{h \nu}{kT}-1)}\\  I = 3.73\times 10^{-16} B_{mod}(860 GHz)\left(\frac{18.6"}{\theta}\right)^2\\ GHz)\left(\frac{1"}{\theta}\right)^2\\  \kappa = \kappa_{1.3mm} \left(\frac{\lambda}{1.3mm}\right)^{-\beta}\\  \end{equation}  where 3.73 x 10$^{-16}$ converts the surface brightness from Jy/sq arcsec to SI units. We make the following assumptions: $\kappa_{1.3mm}$ = 0.11 $\frac{m^2}{kg}$, appropriate for ice-covered dust grains from OH94, $\theta$=15.0", the beamsize of the GBT at 49 GHz, the mean molecular weight $\mu$ = 2.3 and mass to dust ratio $R_d$ = 100. The blackbody functions use $\nu$=860 GHz as a reference frequency to calculate the total gas column density, but the choice of frequency does not affect the final calculation.