Kathryn Devine edited sectionResults_Eight.tex  over 8 years ago

Commit id: a3f2f10decaf84fae113786d50cde8f3ce97f00b

deletions | additions      

       

\section{Results}  \subsection{CS Point Sources}  Eighteen sources displayed emission greater than 3$\sigma$. A typical spectrum is shown in Figure \ref{N92spectrum}. Emission lines were fit using fitgauss, the standard Gaussian fitting routine in GBTIDL. Fitting parameters (amplitude in T$_{mb}$ units, central velocity and FWHM) are listed in Table \ref{fitting}. For sources that displayed a double peak, two simultaneous Gaussian functions were fit to the emission and are listed in consecutive rows. {\bf CS column} densities, {\bf \begin{math} N_{CS}, \end{math}} N_{CS} \end{math}, }  were calculated assuming LTE, optically thin emission and an excitation temperature T$_{ex}$=15 K, a typical ISM value (see review in \citet{Zinnecker2007}). Increasing or decreasing the assumed excitation temperature by 5 K changes the column density by about 30\%. If CS(1-0) is optically thick, as we assume for three sources in section 4.2 below, then our calculation would be a lower limit. Given these assumptions we used the following relation (see \citet{Miettinen2012} for a detailed discussion of the relations below): \begin{equation*}  N_{CS} = \frac{3 k_B \epsilon_0}{2 \pi^2}\frac{1}{\nu \mu^2_{el}S}\frac{Z_{rot}(T_{ex})}{g_K g_I}\frac{e^{E_u/k_B T_{ex}}}{1-\frac{F(T_{bg})}{F(T_{ex})}}\int T_{MB}dv