Convectively Excited IGW

\label{igw}

IGW are generated by convective zones and propagate into neighboring stably stratified regions, carrying energy and AM. To estimate energy and AM fluxes carried by IGW, we use techniques similar to those of F14, QS12, and SQ14. We begin by constructing a sequence of stellar models using the MESA stellar evolution code \citep{paxton:11,paxton:13}. In what follows, we focus on a \(M=12 M_\odot\), \(Z=0.02\) model that has been evolved to CC. Details on the model can be found in Appendix \ref{model}. For our purposes, the most important model outputs are the local heat flux, convective mach numbers, and life time of convectively burning zones. As in SQ14, we find these quantities correlate most strongly with the helium core mass. Stellar models of larger zero-age main sequence (ZAMS) mass or with more mixing (due to overshoot or rotation) tend to have a higher He core mass and may exhibit different wave dynamics than our fiducial model. Our main goal here is simply to provide a rough estimate of IGW AM fluxes for a typical low-mass (\(M \lesssim 20 M_\odot\)) progenitor of a NS.