Matteo Cantiello edited Convective Velocities.tex  over 9 years ago

Commit id: 9c41304d37f37c37de1717b3502e8041d949aa88

deletions | additions      

       

\subsection{Convective Velocities}  We can calculate the accelaration of a convective fluid element  \begin{equation}  \ddot{r} = - g - \frac{1}{\rho} \frac{\partial \P}{\partial \p}{\partial  r}, \end{equation}  which expanded at first order around the equilibrium state leads to an estimate of the total net force (buoyant minus gravitation) $f=-g \Delta \rho$. Along the distance $\Delta r$ a convective fluid element experience the force $f(\Delta r) = - g \Delta \rho (\Delta r)$. Here the variation of $g$ with height is considered negligible. The work done per unit volume over the distance $\Delta r$ is therefore  \begin{equation} 

\begin{equation}\label{eq:velocity2}  \bar{v}^2 = - \frac{1}{8} g (\Delta \rho (\lambda)/\rho) \lambda.  \end{equation}  Relating $\Delta \rho$ and $\Delta T$ requires the equation of state for the gas $\rho = \rho (\mu, T, \P)$, \p)$,  which in differential form can be written as \begin{equation}  \D\rho = \bigg(\frac{\partial \rho}{\partial \mu} \bigg)_{\P,T} \bigg)_{\p,T}  \D\mu + \bigg(\frac{\partial \rho}{\partial T} \bigg)_{\P,\mu} \D T + \bigg(\frac{\partial \rho}{\partial \P} \p}  \bigg)_{\mu,T} \D\P, \D\p,  \end{equation}  ,  \begin{equation}  \D\rho = \frac{\rho}{\mu}\bigg(\frac{\partial \ln \rho}{\partial \ln \mu} \bigg)_{\P,T} \bigg)_{\p,T}  \D\mu + \frac{\rho}{T} \bigg(\frac{\partial \ln \rho}{\partial \ln T} \bigg)_{\P,\mu} \bigg)_{\p,\mu}  \D T + \frac{\rho}{\P} \frac{\rho}{\p}  \bigg(\frac{\partial \ln \rho}{\partial \ln \P} \p}  \bigg)_{\mu,T} \D\P \D\p  \end{equation}  and finally   \begin{equation}  \frac{\D\rho}{\rho} = \alpha \frac{\D\P}{\P} - \delta \frac{\D T}{T} + \phi \frac{\D\mu}{\mu}   \end{equation}  Where   $ \phi \equiv \big(\frac{\partial \ln \rho}{\partial \ln \mu} \big)_{\P,T}, \big)_{\p,T},  \; \delta \equiv - \big(\frac{\partial \ln \rho}{\partial \ln T} \big)_{\P,\mu}, \big)_{\p,\mu},  \; \alpha \equiv \big(\frac{\partial \ln \rho}{\partial \ln \P} \p}  \big)_{\mu,T}$ and for an ideal gas $\alpha = \delta = \phi = 1$, so that using pressure equilibrium ($\D\P= ($\D\p=  0$) we obtain $\Delta \ln \rho = \Delta \ln T$. In the case of a mixture of perfect gas and radiation we can write   \begin{equation}\label{eq:deltarho}  \Delta \ln \rho = -Q \Delta \ln T  \end{equation}  where  \begin{equation}  Q = \frac{4-3 \beta}{\beta} - \bigg(\frac{\partial \ln \mu}{\partial \ln T} \bigg)_{\P}, \bigg)_{\p},  \end{equation}  with $\beta = \P_{Gas}/\P$. \P_{Gas}/\p$.  Plugging Eq.~\ref{eq:deltarho} in \ref{eq:velocity2} one obtains \begin{equation}  \bar{v}^2 = \frac{1}{8} g Q (\Delta T (\lambda) / T) \lambda .  \end{equation} 

We can now rewrite the convective flux using the derived form of the convective velocities and Eq.~\ref{eq:convectiveflux}  \begin{displaymath}\label{eq:convectiveflux2}  F_{c} = \frac{1}{2} \rho \bar{v}\, \cp \, T \frac{\lambda}{\hp} ( \nabla - \nabla') \\  = \frac{1}{4 \sqrt{2}} g^2 \rho^{5/2} \cp Q^{1/2} T \p^{-3/2} P^{-3/2}  \lambda^2 \, (\nabla - \nabla')^{3/2}. \end{displaymath}