Einstein published in 1916 the paper containing the prediction of the existence of gravitational waves. It has just one author (A.E. himself) and consists of a few pages of text and equations \citep{1916SPAW.......688E}. Fast forward exactly 100 years, the LIGO collaboration announced in a paper that they observed what Einstein had predicted. The paper has more than 1000 co-authors and it condenses, in just a few pages of text, equations and figures, an enormous amount of technical information \citep{PhysRevLett.116.061102}.

The Einstein and LIGO papers that, respectively, predicted and observed gravitational waves are very similar in format. So much has changed in 100 years of science. So little has changed in 100 years of scientific publishing. The complexity of the LIGO experiment is astounding, as well as the details of what scientists needed to do to reach this milestone. Measuring a change in length equivalent to 1/1000 the diameter of a proton is not an easy endeavor.

And yet, the sheer technological and intellectual progress that we witnessed in the last century, with the rise of the internet and large scale computing, is not reflected in the methods we use to write up our science. Little has changed since the time of Einstein. Actually not much has changed since the time of Galileo either! Galileo is one of the founding fathers of the scientific method and one of the first people to ever publish a scientific paper in 1610. That’s 400+ years of scientific advancement and we’re still disseminating papers in paper format (or PDF, which is, really, just paper).

Why has scientific publishing changed so little? Scientific papers represent the de-facto currency of academia. Scholars need to publish in journals to get tenure, and in turn publishers have become the ”banks” of the academic world. But the paper of the future should encapsulate all the exciting technological progress we have made. It should be interactive, multilayered and contain all the data and code required for the science described to be carefully reproduced. The LIGO group, together with some Open Science advocates, prepared and shared an amazing interactive document where everyone can play with the real data and pipeline used by the scientists to reach their final conclusions. However, this was not part of the original publication, the reason being that the format of the published article does not allow for such integration.

We created Authorea to address specifically this challenge. Authorea lives in the cloud and is meant to allow large collaborations to write science and easily integrate data, code and all the material needed to reproduce (and discuss) results. Authorea can allow the long-awaited leap that will move the scientific paper in the 21st century.