William Roberts edited Everything.tex  about 9 years ago

Commit id: d002645370428d78e34b785dae6f7ca2a7f49499

deletions | additions      

       

\subsection{Introduction and Background}  Talk of climate change is everywhere, it is on the news, in the papers, and in publishings by researchers with new findings or backing up old ones. Climate change was originally called global warming, but now we know that the climate is doing more than just getting warmer. Assertions heard most commonly about climate change include sea level rise, warming oceans, glacial retreat, more extreme event occurrences, and rising carbon dioxide(CO2) levels. This project focuses on three big aspects of climate change. A major cause, evidence of warming global temperatures, and a specific affect of the increasing temperatures.   \par Carbon dioxide has the largest effect on the Earth's atmosphere. It is significantly larger than other molecules like hydrogen and oxygen. The amount of energy carbon dioxide holds is the standard for the greenhouse effect with a rating of 1. Other molecules, like methane, have a much higher greenhouse rating. Methane has a rating of 20 on the scale(1). However, the volume of them is considerably less than carbon dioxide. When heat radiates from the Earth's surface CO2, and other large molecules, absorb the radiation and reflect it back towards the surface of Earth(1). This is the main contributor in the greenhouse effect. In 2013 the US produced 5,505 million metric tons of CO2(5), 70\% of which was from transportation and producing electricity from burning coal and fossil fuels. The most effective way to reduce CO2 emissions is to reduce fossil fuel consumption(1).  \par A main An effective  way to observe the warming effect from carbon dioxide is to analyze the ocean temperature anomalies. These temperature anomalies are a good indicator of global average temperatures because the water has a high heat index and does not change without a lot of heat input(2). Looking at the temperature anomalies through time is the best option because the records are more reliable than actual temperature records. A temperature anomaly is the difference between the expected average temperature and the actual temperature. Rising ocean temperatures lead to higher sea levels and have a strong effect on the climate and environment of certain areas. Higher ocean temperatures lead to stronger ocean storms and can destabilize marine habitats by aiding in the spread of invasive species and marine diseases(2). The ocean temperature anomalies combined with carbon dioxide data should show a significant correlation \par A specific affect of increasing temperatures could be an increase of wildfire severity. It is not a direct cause and effect relationship, but there are many ways that the changing climate is affecting wildfires. Fire seasons are becoming longer, conditions are becoming drier making for more fuel for fires, and there is an increase in lightning(3). Wild fires have a very important role in nature. The fires return nutrients to the soil by burning dead or dying plants. Wildfires can troublesome when they infringe on populated areas. If this happens, the wildfires threaten the lives and property of the residents and firefighters. In the past, there has been an average of more than 100,000 wildfires which burn 4 to 5 million acres of U.S. land during a given year. Recently that average has peaked at 9 million acres(4). In addition, the overall area burned by fires per year in the United States is projected to double by late this century, if the average summertime temperature increases by a mere 2.9 degrees F(3).  \subsection{Research Question}  Is there a strong correlation between the carbon dioxide levels in the atmosphere and the temperature anomalies in the ocean? If there is a significant correlation, how does it relate to the severity of wildfires within the US?  \section{Design Phase}    \subsection{Design Objectives}  The main objective of this project is to prove that climate change does exist, and show that increased concentrations of carbon dioxide does increase the temperature of the  Earth. The increase in temperatures will be proven using temperature anomaly data of the ocean. With these two data sets in mind, the actual effect on the climate change will be shown using wildfire data. The correlation between the increase in carbon dioxide and the ocean temperature anomalies will follow along the same trend line as the severity of wildfires. A secondary objective is to show this correlation using data from more recent sources. It is important for the purposes of this project to stick to data that is less than 150 years old. This is to show that the climate change is modern occurrence, rather than a long term trend.  \subsection{Consideration of Alternative Approaches}  The data used in this project is more modern compared to the scope of time that climate change occurs over. The oldest data set used dates back to the late 1800s. This is because the data used consists of modern recordings of the various data types. An alternative to this would be exploring data in ice-cores. Data in ice cores goes back thousands of years, and could possibly show a larger picture of the climate cycle. This approach was not used because one of the main objectives is to show the correlation is a  modern trend. \par  This project also had a lot of options in terms of looking at data of the responding variables to the increase in carbon dioxide. Rather than use wildfires as the indication of climate change, the project could have been based around the melting of ice sheets, rising  ocean level rise, levels,  or even reduced snowfall in the mountains. Wildfire severity was chosen because it has a  more abstract application, andbecause  it should increase as the climate gets warmer and drier. drier, showing more correlation back to climate change.  \section{Implementation Phase}   \subsection{Data Acquisition}