Nathanael A. Fortune edited section_Nuclear_Schottky_effect_In__.tex  over 8 years ago

Commit id: 8ed96a9a053338f180ce9b8b18c9d8662501e541

deletions | additions      

       

\label{eq:CurieConstant}  \lambda_N = \mu_0 N_A I (I+1)\frac{\left({\mu}_N g_N\right)^2}{3 k_B}.  \end{equation}  In Note that \textit{in  this expression, we are assuming that the contribution ofthe effective fields of the dipole and quadrupole moments in Cu are negligible zero field field splitting (ZFS) is negligible}  in comparison to that from the applied field $H$. Substituting $g_N = \mathrm{1.5}$ --- the average nuclear g-factor for the two most common Cu isotopes ${}^{63}\mathrm{Cu}$ and ${}^{65}\mathrm{Cu}$ \cite{Leyarovski_1988}--- into Eq.~\ref{eq:CurieConstant} gives a theoretical value $\lambda_{\mathrm{Cu}} = 3.93 \cdot 10^{-12} \textrm{ K}{\textrm{ m}}^3 {\textrm{ mol}}^{-1}$. Experimentally, \cite{Leyarovski_1988} find a value of $\lambda_{\mathrm{Cu}} = 4.03 \cdot 10^{-12} \textrm{ K}{\textrm{ m}}^3 {\textrm{ mol}}^{-1}$ upon fitting Eq.~\ref{eq:SchottkyTail} to their measurements of the specific heat of Cu taken between 0.3 K and 1 K in an applied field of 14 T.