Nathanael A. Fortune edited Cu nuclear moment.tex  over 8 years ago

Commit id: 461802cc62db585b90bc37201f2ad1250f65e521

deletions | additions      

       

\section{Cu nuclear moment}  ${}^{\ 63}_{\ 29}\textrm{Cu}$ and ${}^{\ 65}_{\ 29}\textrm{Cu}$ are the two most common stable Cu isotopes. ${}^{\ 63}_{\ 29}\textrm{Cu}$ has a nuclear spin $I = 3/2$ and a nuclear magnetic moment $\mu = 2.2228 \mu_N$ while ${}^{\ 65}_{\ 29}\textrm{Cu}$ has a nuclear spin $I = 3/2$ and a nuclear magnetic moment $\mu = 2.3812 \mu_N$ \cite{Fuller_1976}. Here, $\mu_N$ is the nuclear magneton, $g = \mu / I$ and the resulting energy splitting in applied field is $\Delta = g \mu_n H / k$ (expressed in temperature units of Kelvin). Numerically, the nuclear magneton  $\mu_N = \frac{h e}{4 \Pi M_p c} = 5.051 10^{-27} \textrm{ J/T}$, J/T}$ is  a factor of 1836.1 smaller than the Bohr magneton(for the electron)  $\mu_B$. Substituting $g_N = \mathrm{1.5}$ --- the weighted average nuclear g-factor for these two most common Cu isotopes \cite{Leyarovski_1988}--- into Eq.~\ref{eq:CurieConstant} gives a theoretical value $\lambda_{\mathrm{Cu}} = 3.93 \cdot 10^{-12} \textrm{ K}{\textrm{ m}}^3 {\textrm{ mol}}^{-1}$. Experimentally, \cite{Leyarovski_1988} find a value of $\lambda_{\mathrm{Cu}} = 4.03 \cdot 10^{-12} \textrm{ K}{\textrm{ m}}^3 {\textrm{ mol}}^{-1}$ upon fitting Eq.~\ref{eq:SchottkyTail} to their measurements of the specific heat of Cu taken between 0.3 K and 1 K in an applied field of 14 T.