Nathanael A. Fortune edited section_Nuclear_Schottky_effect_In__.tex  over 8 years ago

Commit id: 3d3ad84b68525ae183b4d963702e92dfae2ed92f

deletions | additions      

       

where ${\mu}_0 = 4\pi \cdot 10^{-7} \textrm{ H/m}$ and the nuclear Curie constant $\lambda_N$ is given by   \begin{equation}  \label{eq:CurieConstant}  \lambda_N \frac{\lambda_N}{\mu_0}  =\mu_0  N_A I (I+1)\frac{\left({\mu}_N g_N\right)^2}{3 k_B}. k_B} \textrm{ J K / mol T^2}.  \end{equation}  where the nuclear magneton $\mu_N = \frac{h e}{4 \pi M_p c} = 5.051 10^{-27} \textrm{ J/T}$ is a factor of 1836.1 smaller than the Bohr magneton $\mu_B$. Note that in this expression, we are assuming that the zero field field splitting (ZFS) is negligible in comparison to that from the applied field $H$.