Nathanael A. Fortune edited section_Nuclear_Schottky_effect_In__.tex  over 8 years ago

Commit id: 2c1fb25a369b286f0b703496c6b84497a559924c

deletions | additions      

       

where ${\mu}_0 = 4\pi \cdot 10^{-7} \textrm{ H/m}$ and the nuclear Curie constant $\lambda_N$ is given by   \begin{equation}  \label{eq:CurieConstant}  \frac{\lambda_N}{\mu_0} = N_A I (I+1)\frac{\left({\mu}_N g_N\right)^2}{3 k_B} \textrm{ J [J  K / mol T^2}. T^2]}.  \end{equation}  where the nuclear magneton $\mu_N = \frac{h e}{4 \pi M_p c} = 5.051 10^{-27} \textrm{ J/T}$ is a factor of 1836.1 smaller than the Bohr magneton $\mu_B$. Note that in this expression, we are assuming that the zero field field splitting (ZFS) is negligible in comparison to that from the applied field $H$.