Benjamin Sanchez Lengeling edited The_highest_efficency_solar_cells__.md  about 9 years ago

Commit id: 21a16a906b4afc334448040182fcd7a80cc82086

deletions | additions      

       

The highest efficency solar cells are based around the heterojunction formed between n-type CdS and p-type CdTe. The basic composition of the cell (figure ) is as follows:  * **Glass** ***Glass**  The solar cell is produced on a substrate of ordinary window glass, because it is transparent, strong and cheap. Typically around 2-4 mm thick, this protects the active layers from the environment, and provides all the device's mechanical strength. The outer face of the pane often has an anti-reflective coating to enhance its optical properties. * **Transparent ***Transparent  conducting oxide (TCO)** Usually of tin oxide or indium tin oxide (ITO), this acts as the front contact to the device. It is needed to reduce the series resistance of the device, which would otherwise arise from the thinness of the CdS layer. * **Cadmium sulphide** The polycrystalline CdS layer is n-type doped (as CdS invariably is), and therefore provides one half of the p-n junction. Being a wide band gap material (Eg ~ 2.4 eV at 300K) it is transparent down to wavelengths of around 515 nm, and so is referred toas the window layer. Below that wavelength, some of the light will still pass through to the CdTe, due the thinness of the CdS layer (~ 100 nm).   * **Cadmium telluride** The CdTe layer is, like the CdS, polycrystalline, but is p-type doped. Its energy gap (1.5 eV) is ideally suited to the solar spectrum, and it has a high absorption coefficient for energies above this value. It acts as an efficient absorber and is used as the p side of the junction. Because it is less highly doped than the CdS, the depletion region is mostly within the CdTe layer. This is therefore the active region of the solar cell, where most of both the carrier generation and collection occur. The thickness of this layer is typically around 10 µm.   * **Back contact** Usually of gold or aluminium, the back contact proves a low resistance electrical connection to the CdTe. P-type CdTe is a notoriously difficult material on which to produce an ohmic contact, and so the junction will inevitably display some Schottky diode (rectifying) characteristics. Due to its high conductivity, the metal layer needs only be a few tens of nanometres in thickness.