Eugeniu Plamadeala edited untitled.tex  about 9 years ago

Commit id: d7db97459cdccf6dfc1c5f4de433bdc4acab6166

deletions | additions      

       

From the commutation relation of Giamarchi (2.25) $[ \phi(x), \partial_y \theta (y) ] = i \pi \delta(x-y)$ we can backtrack the commutation relations of the chiral fields after we substitute the field redefinition into the above commutator:  $$ \phi = \frac{\phi_L^{(G)} - \phi_R^{(G)}}{2} $$  $$ \theta = \frac{\phi_L^{(G)} + \phi_R^{(G)}}{2K} $$  $$ \frac{1}{4K} \left[ \phi_L^{(G)}, \partial_x \phi_L^{(G)} \right] + \frac{1}{4K} \left[ -\phi_R^{(G)}, \partial_x \phi_R^{(G)} \right] = i \pi \delta(x-y) $$ So, both for Giamarchi's ($\phi_{R/L}^{(G)}$ and our chiral fields $\phi^{R/L} = \phi_{I/N+I}$:  $$ \left[ \phi_R, \partial_x \phi_R \right] = -i 2\pi \delta(x-y) $$  $$ \left[ \phi_L, \partial_x \phi_L \right] = i 2\pi \delta(x-y) $$