Andrew Wetzel edited simulations.tex  about 9 years ago

Commit id: a7c9665d3424744f7786c8b6c6796dfb430ff799

deletions | additions      

       

\subsection{Simulations}  To measure infall times of satellites in a cosmological context, satellites,  we use ELVIS (Exploring the Local Volume in Simulations), a suite of cosmological zoom-in $N$-body simulations targeted to modeling the LG \citep{GarrisonKimmel2014}. ELVIS was run using \textsc{GADGET-3} and \textsc{GADGET-2} \citep{Springel2005e} in a $\Lambda$CDM cosmology based on WMAP7 \citep{Larson2011}: $\sigma_8=0.801$, $\omegamatter=0.266$, $\omegalambda=0.734$, $n_s=0.963$ and $h=0.71$.  Within the zoom-in regions, the particle mass is $1.9\times10^5\msun$ and the Plummer-equivalent force softening is $140\pc$ physical (at $z<9$). physical.  ELVIS contains 48 dark-matter halos of masses similar to the MW or M31 ($\mvir=1.0-2.8\times10^{12}\msun$), with a median $\rvir\approx300\kpc$, the distance at which where  observed dwarf galaxies show a transition in properties. strong transition.  Half of the halos  are part of a pair that resemble the masses, distance, and relative velocity of the MW-M31 pair, while the other half are single isolated halos matched in masses to the paired ones. halos.  We use all 48 halos, given the lack of strong difference systematic differences  in satellite infall times in the paired versus isolated halos \citep{Wetzel2015}. ELVIS identifies dark-matter (sub)halos using the six-dimensional halo finder \textsc{rockstar} \citep{Behroozi2013a} and constructs merger trees using the \textsc{consistent-trees} algorithm \citep{Behroozi2013b}.  For each halo, we assign a virial mass, $\mvir$, and radius, $\rvir$, according to \citet{BryanNorman1998}.  A ``subhalo'' is a halo whose center is inside $\rvir$ of a (more massive) more massive  host halo, and it a subhalo  experiences ``first infall'' and becomes a ``satellite'' when it first passes within $\rvir$. For each subhalo, we compute the peak mass, $\mpeak$, that it ever reached.  In order to match to observed satellites, reached, and  we assign $\mstar$ to subhalos based on their $\mpeak$ using the relation from abundance matching in \citet{GarrisonKimmel2014}, which reproduces the observed mass function at $\mstar<10^9\msun$ in the LG if one accounts for observational incompleteness \citep{Tollerud2008, Hargis2014}. %While the relation between $\mstar$ and subhalo $\mpeak$ for dwarf galaxies remains highly uncertain, likely with significant scatter, in this work the relation is important \emph{only} in assigning infall time distributions to satellites in a 1-dex bin of $\mstar$.  %As \citet{Wetzel2015} showed, satellite infall times generally change by $<10-20\%$ over $\sim 1$ dex in $\mstar$.