Andrew Wetzel edited summary_discussion.tex  about 9 years ago

Commit id: 9fba8b11400f687efd89f6658066666743565c6c

deletions | additions      

       

Thus, satellite quenching timescales at $\mstar\gtrsim10^9\msun$ do not necessarily \emph{require} strong environmental processes beyond truncated gas accretion \citep[see also discussions in][]{Wetzel2013, Wheeler2014, McGee2014}.  However, strangulation cannot explain the rollover in satellite quenching times at $\mstar\lesssim10^9\msun$, because the gas-rich dwarf galaxies of the LG also have $\mgas\gtrsim\mstar$ \citep{GrcevichPutman2009} and thus contain enough cold gas to fuel star formation for a Hubble time, even absent accretion.  Thus, the rapid decline at lower $\mstar$ \emph{requires} an additional process(es) to remove gas from satellite dwarf galaxies satellites  after infall. This likely arises from the increased efficiency of ram-pressure stripping in removing cold gas from such satellites with shallower potential wells.  Moreover, for dwarf galaxies, the same internal stellar feedback that regulates their low star-formation efficiency and heats/drives significant cold gas to large radii \citep[e.g.,][]{Muratov2015} would assist such environmental stripping to become even more efficient.  Thus, the rapid environmental quenching timescales for dwarf galaxies may arise from the non-linear interplay of both internal feedback and external stripping \citep[e.g.,][]{NicholsBlandHawthorn2011, BaheMcCarthy2015}.