Patrick Janot edited Luminosity and Energy.tex  almost 11 years ago

Commit id: fdd2d7c7d0a43d3692087b22c0607b20abe327cb

deletions | additions      

       

\subsection{Luminosity and Energy}  The state-of-the-art machine parameters can be found in Ref.~\cite{cite:1305.6498}, for the four centre-of-mass energies of interest, the Z pole ($\sqrt{s} \sim m_{\rm Z}$), the WW threshold ($\sqrt{s} \sim 2 m_{\rm W}$), the HZ cross-section maximum ($\sqrt{s} \sim 240$ GeV), and the top-pair threshold ($\sqrt{s} \sim 2m_{\rm top}$). The 12 GV RF system is designed to compensate for the energy loss by synchrotron radiation at the maximum centre-of-mass energy ($\sim 350$ GeV), at which an instantaneous luminosity of $1.3\times 10^{34} \cms$ can be delivered at each interaction point. At lower centre-of-mass energies, the energy losses decrease steeply like $1/E^4_{\rm beam}$, and the RF power thus made available can be used to accelerate a much larger number of ${\rm e}^\pm$ bunches. As a result, the instantaneous luminosity increases approximately like $1/E^3_{\rm beam}$ when the centre-of-mass energy decreases. (The smaller exponent is a consequence of the tighter beam-beam limit at lower energies.) The values of the instantaneous luminosities expected at each energy are displayed in Table~\ref{tab:lumi}, together with other important parameters of the machine (beam (centre-of-mass energy, beam  size,total  RF power, cavity gradient,  number of bunches, etc.). \label{tab:lumi}  \begin{table} 

\begin{tabular}{|c|c|c|c|c|}  & TLEP-Z & TLEP-W & TLEP-H & TLEP-t \\  $\sqrt{s}$ (GeV) & 90 & 160 & 240 & 350 \\   {\cal L} $10^{34} \cms$ L ($10^{34} \cms$)  & 56 & 16 & 5 & 1.3 \\ \# bunches & 4400 & 600 & 80 & 12 \\  RF Gradient (MV/m) & 3 & 3 & 10 & 20 \\  Vertical beam size (nm) & 270 & 140 & 140 & 100 \\   Total AC Power (MW) & 250 & 250 & 260 & 284 \\  \end{tabular}  \end{table}