Patrick Janot edited aphas.tex  over 10 years ago

Commit id: 66d4b77e0e82a2171ee467f64b375488a582c654

deletions | additions      

       

\small  \alpha_{\rm s} (m^2_{\rm Z}) = 0.1226 \pm 0.0038 \ ({\rm exp}) {\ }^{+0.0028\ (\mu = 2.00 m_{\rm Z})}_{−0.0005\ (\mu = 0.25 m_{\rm Z})}  {\ }^{+0.0033\ (m_{\rm H} = 900\ {\rm GeV}/c^2)}_{−0.0000\ (m_{\rm H} = 100\ {\rm GeV}/c^2)}  \pm 0.0002\ {\ }^{+0.0002\  (m_{\rm top} = \pm 5 180 {\rm GeV}/c^2)_{-0.0002\ (m_{\rm top} = 170  {\rm GeV}/c^2) \pm 0.0002\ ({\rm renormal. \ schemes}) = 0.1226^{+0.0058}_{−0.0038} \end{equation}  Since the uncertainty due to the Higgs mass dependence is no longer relevant, the top quark mass dependence is negligible, and the pQCD scale uncertainty from latest NNNLO calculations [6, 7] is only 0.0002 on $\alpha_s (M^2_Z)$, this method should allow access to high precision on $\alpha_s$.