Patrick Janot edited Statistical analysis.tex  about 9 years ago

Commit id: d6c206670749f4d70473897c0640589ff1b845de

deletions | additions      

       

\end{equation}  which leads to the following $3\times 3$ covariance matrix $V_1 = 4\sin^2\theta_W \times {\cal L} \times X$ with  \begin{eqnarray}  X_{11} = \int {\rm d}\Omega {f_A^\gamma \times f_A^\gamma \over S^0} \ , \  & X_{12} = \int {\rm d}\Omega {f_A^\gamma \times f_A^Z \over S^0} \ , \  & X_{13} = \int {\rm d}\Omega {f_A^\gamma \times f_B^Z \over S^0} \ , \\ & X_{22} = \int {\rm d}\Omega {f_A^Z \times f_A^Z \over S^0} \ , \  & X_{23} = \int {\rm d}\Omega {f_A^Z \times f_B^Z \over S^0} \ , \\ & & X_{33} = \int {\rm d}\Omega {f_B^Z \times f_B^Z \over S^0} \ .  \end{eqnarray}  In the second configuration of Ref.~\cite{Baer_2013}, only the two coefficients $F_{2V}^\gamma$ and $F_{2V}^Z$ are allowed to vary, which leads to the even simpler expression of Eq.~\ref{eq:optimal} 

\end{equation}  and the following $2\times 2$ covariance matrix $V_2 = 4\sin^2\theta_W \times {\cal L} \times Y$, with   \begin{eqnarray}  Y_{11} = \int {\rm d}\Omega {(f_A^\gamma + f_C^\gamma)^2 \over S^0} \ , \  & Y_{12} = \int {\rm d}\Omega {(f_A^\gamma + f_C^\gamma) \times (f_A^Z + f_C^Z) \over S^0} & \ , \\ & Y_{22} = \int {\rm d}\Omega {(f_A^Z + f_C^Z)^2 \over S^0} & \ .  \end{eqnarray}