Patrick Janot edited Statistical analysis.tex  about 9 years ago

Commit id: 3ce71d7d317b83c03cd898f133ded43a0d5793c0

deletions | additions      

       

\end{equation}  which leads to the following $3\times 3$ covariance matrix $V_1 = 4\sin^2\theta_W \times {\cal L} \times X$ with  \begin{eqnarray}  X_{11} = \int {\rm d}\Omega {f_A^\gamma \times f_A^\gamma {(f_A^\gamma)^2  \over S^0} \ , \ & {\displaystyle X_{12} = \int {\rm d}\Omega {f_A^\gamma \times f_A^Z \over S^0}} \ , \ & X_{13} = \int {\rm d}\Omega {f_A^\gamma \times f_B^Z \over S^0} \ , \\ & {\displaystyle X_{22} = \int {\rm d}\Omega {f_A^Z \times f_A^Z {(f_A^Z)^2  \over S^0} } \ , \ & X_{23} = \int {\rm d}\Omega {f_A^Z \times f_B^Z \over S^0} \ , \\ & & X_{33} = \int {\rm d}\Omega {f_B^Z \times f_B^Z {(f_B^Z)^2  \over S^0} \ . \end{eqnarray}  In the second configuration of Ref.~\cite{Baer_2013}, only the two coefficients $F_{2V}^\gamma$ and $F_{2V}^Z$ are allowed to vary, which leads to the even simpler expression of Eq.~\ref{eq:optimal}  \begin{equation}