Patrick Janot edited Statistical analysis.tex  about 9 years ago

Commit id: 35afddc9098cec132dacf386476b637e4f24cbc0

deletions | additions      

       

\end{equation}  which leads to the following $3\times 3$ covariance matrix $V_1 = 4\sin^2\theta_W \times {\cal L} \times X$, with  \begin{eqnarray}  \label{eq:firstInt}  X_{11} = \int {\rm d}\Omega {(f_A^\gamma)^2 \over S^0} \ , \ & {\displaystyle X_{12} = \int {\rm d}\Omega {f_A^\gamma \times f_A^Z \over S^0}} \ , \ & X_{13} = \int {\rm d}\Omega {f_A^\gamma \times f_B^Z \over S^0} \ , \\ & {\displaystyle X_{22} = \int {\rm d}\Omega {(f_A^Z)^2 \over S^0} } \ , \ & X_{23} = \int {\rm d}\Omega {f_A^Z \times f_B^Z \over S^0} \ , \\  & & X_{33} = \int {\rm d}\Omega {(f_B^Z)^2 \over S^0} \ .  \end{eqnarray} 

and the following $2\times 2$ covariance matrix $V_2 = 4\sin^2\theta_W \times {\cal L} \times Y$, with   \begin{eqnarray}  Y_{11} = \int {\rm d}\Omega {(f_A^\gamma + f_C^\gamma)^2 \over S^0} \ , \ & {\displaystyle Y_{12} = \int {\rm d}\Omega {(f_A^\gamma + f_C^\gamma) \times (f_A^Z + f_C^Z) \over S^0}} & \ , \\  \label{eq:lastInt}  & {\displaystyle Y_{22} = \int {\rm d}\Omega {(f_A^Z + f_C^Z)^2 \over S^0} } & \ . \end{eqnarray}  The numerical results are presented in the next section for the case of the FCC-ee.