Cato edited Payam and DNA.tex  almost 11 years ago

Commit id: fcc3ea6f1e1caded4fa92063caf67320c397c671

deletions | additions      

       

\begin{enumerate}  \item What happens if an {\it interior} or bulk DNA piece approaches the pore?  \item In \citet{2013PhRvE..87d2723R} page 5, it is claimed that DNA  motion will be occur in  a superposition of longitudinal and transverse. transverse orientiations (i.e. along the longest dimension, or perpendicular to it).  Is this true -- won't one of them be unstable (in unstable? What is  the case where work done effect of $T$  in dragging is less than $T$, say)? randomising the orientation?  %%-------------------------------------------------  \begin{itemize}  \item Reading: \citet{Binder_1939}, \citet{Burgers_1995}  \item Drag resistances (for elongated/prolate bodies)  from \citet{Burgers_1995}:\\ For a spherical particle: $F_{\rm drag}^{\rm sph}=6\pi\eta a V$.\\  For an end-on ellipsoid: $F_{\rm drag}^{\rm elle}=\frac{4\pi\eta a V}{\ln(2a/b_0)-0.5}$, where $a$ is half the length(think prolate)  and $b_0$ is the equatorial radius.\\ For an end-on cylinder: $F_{\rm drag}^{\rm cyle}=\frac{4\pi\eta a V}{\ln(2a/b)-0.72}$ (slightly higher than ellipsoid).\\  For a face-on ellipsoid: $F_{\rm drag}^{\rm ellf}=\frac{8\pi\eta ellf}\simeq\frac{8\pi\eta  a V}{\ln(2a/b)-0.5}$.\\ For a face-on cylinder: similar to the face-on ellipsoid, but slightly higher. higher.\\   As expected, the face-on bodies (where the motion is perpendicular to the long axis) encounter more resistance to motion than the end-on bodies -- roughly twice as much, depending on the dimensions. Doesn't this mean that, in steady-state, all the DNA will move in the longitudinal direction?  \item Energy dissipation to viscous fluid. What is energy dissipated by electric field?  \end{itemize}