Cato added missing citations  almost 11 years ago

Commit id: be41acc416187591dfe9e297941bf6373089706a

deletions | additions      

       

%  \item Interpretation of the {\it control parameter} $\lambda(t)$ in this context: it is the ``force'' that a particle in a absolute zero vacuum would experience in the potential. Real experiment \ra randomness.  %  \item The work parameter provides the distinction between work and heat flow (at least in Crooks' derivation \cite{http://adsabs.harvard.edu/abs/1998JSP....90.1481C}). \cite{1998JSP....90.1481C}).  (See also \citet{http://adsabs.harvard.edu/abs/1999PhRvE..60.2721C} \citet{1999PhRvE..60.2721C}  and \citet{http://adsabs.harvard.edu/abs/1999PhDT........37C}.) \citet{1999PhDT........37C}.)  %  \item In the derivation of the JE, can we transform $\lambda(t) \rightarrow \lambda(x)$ to make relevance to fixed potential stronger? If so, then smooth $V(x)$ can be steps in $H(t)$.  %  \end{itemize}  Solving the problem  \begin{itemize}  \item Treat as absorbing boundary with drift, and solve the diffusion equation (see page 3 of Payam's paper. \citet{10.1103/PhysRevE.87.042723}). \citet{Rowghanian_Grosberg_2013}).  %  \item If we can make free energy change zero, then $\langle e^{-\beta W}\rangle = 1$. With dissipative process.  \end{itemize}