Cato edited Payam and DNA.tex  over 10 years ago

Commit id: 4f32fb576678e39b055fe9f624d3a777beb130bf

deletions | additions      

       

\item Drag resistances (for elongated/prolate bodies) from \citet{Burgers_1995}:\\  For a spherical particle: $F_{\rm drag}^{\rm sph}=6\pi\eta a V$.\\  For an end-on ellipsoid: $F_{\rm drag}^{\rm elle}=\frac{4\pi\eta ell-e}=\frac{4\pi\eta  a V}{\ln(2a/b_0)-0.5}$, where $a$ is half the length and $b_0$ is the equatorial radius.\\ For an end-on cylinder: $F_{\rm drag}^{\rm cyle}=\frac{4\pi\eta cyl-e}=\frac{4\pi\eta  a V}{\ln(2a/b)-0.72}$ (slightly higher than ellipsoid).\\ For a face-on ellipsoid: $F_{\rm drag}^{\rm ellf}\simeq\frac{8\pi\eta ell-f}\simeq\frac{8\pi\eta  a V}{\ln(2a/b)-0.5}$.\\ For a face-on cylinder: similar to the face-on ellipsoid, but slightly higher.\\  As expected, the face-on bodies (where the motion is perpendicular to the long axis) encounter more resistance to motion than the end-on bodies -- roughly twice as much, depending on the dimensions. Doesn't this mean that, in steady-state, all the DNA will move in the longitudinal direction?