Hans Moritz Günther edited our_equations.tex  over 10 years ago

Commit id: bc1997c32c9c889db57e3fdf8f3ce39e38009d66

deletions | additions      

       

The Rankine-Hugoniot jump conditions relate the density, velocity and pressure on both sides of a strong shock. For ideal gases and non-oblique shocks the conservation of mass, momentum and energy across the shock can be written as follows \citep[][chap.~7, \S~15]{http://adsabs.harvard.edu/abs/1967pswh.book.....Z}, where the state before the front of the shock front is marked by the index 0, that behind the shock by index 1:  \begin{eqnarray}  \rho_0 v_0 &=& \rho_1 v_1 \label{RH1}\\ \label{eqn:RH1}\\  P_0+\rho_0 v_0^2 &=& P_1+\rho_1 v_1^2 \label{RH2}\\ \label{eqn:RH2}\\  \frac{5 P_0}{2\rho_0}+\frac{v_0^2}{2}&=&\frac{5 P_1}{2\rho_1}+\frac{v_1^2}{2} \ ,\label{RH3} ,\label{eqNRH3}  \end{eqnarray}  where $\rho$ denotes the total mass density of the gas and $P$ its pressure.   Initially, the stellar wind is relatively cold and thus the thermodynamic pressure can be neglected, setting $P_0=0$. In the strong shock limit $v_0=4\;v_1$. With these two simplifications, eqn.~\ref{RH3} eqn.~\ref{eqn:RH3}  yields \begin{equation}  P_1 = \frac{3}{4} \rho_0 v_0^2 \label{eqn:4}  \end{equation}